Assignment no 09: Chapter 08

Note: You can check the exercises after the book Chapter. In our assignment, we are using the $11^{\text {th }}$ edition of "Digital Fundamentals" By Thomas L. Floyd"

1. What is a register?
2. What is the storage capacity of a register that can retain one byte of data?
3. What does the "shift capacity" of a register mean?
4. For the data input and clock in Figure 8-47, determine the states of each flip-flop in the shift register of Figure 8-3 and show the Q waveforms. Assume that the register contains all 1s initially.

FIGURE 8-47

7. What is the state of the register in Figure 8-49 after each clock pulse if it starts in the 101001111000 state?

FIGURE 8-49

10. A leading-edge clocked serial in/serial out shift register has a data-output waveform as shown in Figure 8-52. What binary number is stored in the 8 -bit register if the first data bit out (leftmost) is the LSB?

FIGURE 8-52

14. The shift register in Figure 8-54(a) has SHIFT/LOAD and CLK inputs as shown in part (b). The serial data input (SER) is a 0 . The parallel data inputs are $\mathrm{D} 0=1, \mathrm{D} 1=0, \mathrm{D} 2=1$, and $\mathrm{D} 3=$ 0 as shown. Develop the data-output waveform in relation to the inputs.

FIGURE 8-54
21. For the 8-bit bidirectional register in Figure 8-57, Determine the state of the register after each clock pulse for the RIGHT/LEFT control waveform given. A HIGH on this input enables a shift to the right, and a LOW enables a shift to the left. Assume that the register is initially storing the decimal number seventy-six in binary, with the right-most position being the LSB. There is a LOW on the data-input line.

FIGURE 8-57

27. For the ring counter in Figure 8-60, Show the waveforms for each flip-flop output with respect to the clock. Assume that FF0 is initially SET and that the rest are RESET. Show at least ten clock pulses.

FIGURE 8-60

